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Abstract

One of the key bene�ts of future hardware implementations of certain
arti�cial neural networks (ANN's) is their apparently \built-in" fault

tolerance which makes them potential candidates for critical tasks with
high reliability requirements. This paper investigates the fault-tolerance
characteristics of time-continuous, recurrent ANN's that can be used

to solve optimization problems. The principle of operation and the
performance of these networks are �rst illustrated by using well-known
model problems like the traveling salesman problem and the assignment
problem. The ANN's are then subjected to up to 13 simultaneous \stuck-

at-1" or \stuck-at-0" faults for network sizes of up to 900 \neurons."
The e�ect of these faults on the performance is demonstrated and the
cause for the observed fault tolerance is discussed. An application

is presented in which a network performs a critical task for a real-
time distributed processing system by generating new task allocations
during the recon�guration of the system. The performance degradation
of the ANN under the presence of faults is investigated by large-scale

simulations, and the potential bene�ts of delegating a critical task to a
fault-tolerant network are discussed.

1. Introduction

In spite of the fast-growing complexity and power of modern computer technology, there are
a number of tasks in information processing that seem to be inherently di�cult if not intractable

for conventional computer systems. These are tasks like pattern recognition, nonlinear adaptive
control, or autonomous navigation that are routinely mastered not only by humans but also by
much \simpler" biological systems. The principles of biological information processing appear to

be completely di�erent from the way that conventional computers operate. This might explain
why computers have such di�culties with tasks from the \biological domain" and vice versa.

Current research in neural networks addresses these issues and seeks to explore and understand
these principles of biological information processing. Recent years have seen an immense growth
in those activities, which produced a variety of abstract models called arti�cial neural networks

(ANN's) that are inspired by and loosely based on our current understanding of the operation
of simple biological systems.

Although most ANN's bear little resemblance to real nervous systems and do not actually

claim to be biologically plausible, they try to incorporate some of the key aspects of biological
information processing. These are, for example, the capability to learn and to adapt to
environmental changes, the distributed storage of information, and an architecture based on

many simple computational units (model \neurons") that are interconnected and operate in
parallel. Several dozen distinct types of ANN's exist that have been developed for speci�c
purposes, but a survey or classi�cation of these types is beyond the scope of this paper. A general

introduction into so-called neural computing can be found, for example, in work by Kohonen
(1988); Pao (1989); Rumelhart, McClelland, and PDP Research Group (1986); Wasserman

(1989); and Zornetzer, Davis, and Lau (1990).

We are especially interested in another very intriguing characteristic of biological as well as
arti�cial neural networks, that is, their apparently inherent fault tolerance. The fault tolerance of
conventional systems is a carefully calculated design goal that requires some form of hardware or

software redundancy which increases the complexity of the system. That is, it is always possible
to build a simpler system without the redundancy, and this system has the same performance

under fault-free conditions as the fault-tolerant system. In contrast, the fault tolerance of neural
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networks seems to be inseparable from their functional characteristics and is neither planned nor
can it be removed. This fault tolerance has been demonstrated for various ANN's, but only as a

side e�ect and without a systematic investigation of the underlying causes. (See Anderson 1983;
Sejnowski and Rosenberg 1986; Hinton and Sejnowski 1986; Hutchinson and Koch 1986.) A few

studies focused more explicitly on the fault tolerance (Hinton and Shallice 1989; Belfore and
Johnson 1989; Petsche and Dickinson 1990), and we will discuss their approaches and results in
section 5.

In this paper we will investigate a particular ANN model that was published by Hop�eld
in 1984 and can be used to solve certain optimization problems. In the following discussion

we will adopt the term optimization networks for these ANN's, a term that was coined by
Tank and Hop�eld (1986). The network can be implemented as an electronic circuit with

nonlinear operational ampli�ers representing the neurons and feedback connections between
the ampli�ers. The resulting complex, nonlinear dynamical system has many di�erent stable
states that represent local energy minima. If the system is properly designed, then these stable

states correspond to the solutions of a target optimization problem. Thus, the system \solves"
the optimization problem by converging from an initial state with partial information about the
solution to a local energy minimum that corresponds to a good, if not the best, solution.

Although optimization networks were initially applied to classical problems like the traveling
salesman problem, we are more interested in potential applications in real-time processing and

control systems. For example, an optimization network implemented in analog hardware could
perform a real-time scheduling or control task as a component of a hybrid system. If this is a

critical task with high reliability requirements, then the allegedly \built-in" fault tolerance of
the neural network becomes a key factor. With such applications in mind, we will investigate the
fault tolerance of optimization networks and quantify the performance degradation in simulated

\fault-injection" experiments. A broader goal is to gain insight into the principal character of
the fault tolerance of these neural networks and to explore the underlying cause.

The following two sections of this paper contain a comprehensive introduction to optimization
networks. Section 2 describes the architecture and equations that govern the dynamics of the

network. The principle of how to solve an optimization problem by \mapping" it onto the
network is explained in section 3 for two example problems, the assignment problem (AP) and
the traveling salesman problem (TSP). Readers who are already familiar with the operation of

optimization networks might want to skip these introductory sections and start with section 4
which introduces a performance measure that allows a meaningful assessment of how well the
network actually solves the AP and TSP. Such a performance measure is a prerequisite for

quantifying the performance degradation in the presence of simulated faults that are \injected"
into the network. Section 5 presents these results for the AP and TSP that are used again

as model problems and discusses the cause and e�ect of the observed fault tolerance. Finally,
section 6 describes an application in which an optimization network is used for the real-time task
allocation in a fault-tolerant, distributed processing system. The network is a critical component

in this application and its fault tolerance is an essential requirement for the operation of the
system. Thus, we will again il lustrate how this network performs under the presence of faults

and quantify the performance degradation in large-scale simulations. The concluding remarks
in section 7 summarize the main results and discuss the prospects of optimization networks for
di�erent application areas.

2. Optimization Networks

In 1982, Hop�eld introduced a network of interconnected model neurons that function as an
associative memory with stable states corresponding to stored binary patterns. The development

of this model was inspired by the observed behavior of certain physical systems that exhibit
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collective phenomena, such as stable magnetic orientations, as a result of the interactions among
a large number of elementary components. This associative memory model is often referred to

as Hop�eld's discrete model because it uses two-state (binary) neurons and is discrete in time
as well as in state space. As an extension of this work, Hop�eld (1984) proved the stabil ity

of a time-continuous model that has stable states corresponding to the discrete model and can
be realized in hardware by an analog electronic circuit with operational ampli�ers. This model
attracted much attention, especially after Hop�eld and Tank demonstrated in 1985 how it can

be used to solve hard optimization problems like the TSP.

Figure 1 shows a general optimization network in the form of an electrical circuit model

(Hop�eld and Tank 1985) with n interconnected ampli�er units (neurons) as the active circuit
elements. The model allows resistive feedback from any output Vj to any input ui with a resistor

value Rij or a conductance Tij = 1=Rij , respectively. The current Ii can be used to provide an
external input to the network. The nonlinear, sigmoidal transfer function that determines the
relation between an input ui and an output Vi is given by

Vi =
1

2

�
1 + tanh

�
ui � us

u0

��
=

1

1+ exp [�4� (ui � us)]
(1)

where

� =
1

2u0
=

dVi

dui

����
ui=us

The parameter � denotes the slope of the transfer function at the in
ection point ui = us and
constitutes the maximum gain of the ampli�er. This transfer function is depicted in �gure 2 for

a particular choice of the parameters � and us. The o�set us is sometimes explicitly used as an
additional parameter (Brandt et al. 1988), but it can be incorporated into the current Ii which

has also the e�ect of shifting the transfer function horizontally.
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Figure 1. Circuit diagram of optimization network according to Hop�eld (1984). Note that negative feedback can be

realized by connecting positive conductances Tij to negative output �Vi of unit (not shown in this �gure).

Positive and negative feedback connections, which correspond to excitatory and inhibitory

synapses in biological neurons, respectively, can be mathematically described by positive and
negative values forTij . Here, Tij is commonly referred to as the weight of the connection between

the output of unit j and the input of i. In an electronic circuit realization, Tij = 1=Rij can only
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Figure 2. Nonlinear transfer function of unit. Shift us = 0:5; Gain �= 2:5; Vi =
1

1 + exp[�4�(ui � ux)]
.

be positive, and negative feedback requires the use of an additional output �Vi for unit i ranging
from 0 to �1. Connecting Rij to the negative output realizes negative or inhibitory feedback.
The intrinsic delay exhibited by any physical ampli�er as well as by a biological neuron is

modeled by an input resistance ri and capacitance Ci. These are drawn as external components
in �gure 1 so that the actual ampli�er can be described as an ideal component with no delay.1

A circuit analysis of the network in �gure 1 yields the \equations of motion"

Ci
dui

dt
= �

ui

Ri
+

nX

j=1

TijVj + Ii (2)

that describe the time evolution of the dynamical system where t denotes time. (Appendix A
shows in detail how this circuit analysis is performed.) In equation (2), Ri represents the

parallel combination of the input resistance ri and all the weights Tij = 1=Rij connected to
unit i according to

1

Ri
=

1

ri
+

nX

j=1

Tij (3)

Equation (2) is usually simpli�ed by assuming2 that Ri = R and Ci = C for all units i.

Hop�eld (1984) proved the stability of the nonlinear dynamical system in equation (2) for
symmetric connections (Tij = Tji). By introducing a Liapunov function, he showed that in the

high-gain limit (� ! 1) the stable states of the system correspond to the local minima of the
quantity

E = �
1

2

nX

i=1

nX

j=1

TijViVj �

nX

i=1

ViIi (4)

which Hop�eld refers to as the computational energy of the system. This means that the

dynamical system moves from an initial point in state space in a direction that decreases its

1 This is, however, an idealiz ed mode l of a practical ampli�er according to Smith and Portmann (1989). More realistic

models might lead to instability of the system. (See also Marcus and Weste rvelt (1989).)
2 Note that the assumption of a constant Ri is di�cult to realize in prac tice because di�erent values for the input

resistances r iwould have to compensate for variations of the sum of the weights according to equation (3). These variations

are conside rable if problem-speci�c data are encoded in the weights as in the case for the TSP.

4



energy in equation (4) and comes to a stop at one of the many local minima of the energy
function. A detailed discussion of this stability proof and the underlying assumptions can be

found in appendix B.

Grossberg (1988) showed that the Liapunov function in equation (4) for the system in

equation (2) is a special case of a more complex Liapunov function introduced by Cohen and
Grossberg in 1983, so that equation (4) might not be considered as a new result in itself.

Nevertheless, this does not diminish Hop�eld and Tank's (1985) main contribution, which can
be seen as their method of associating the equil ibrium states of the network with the (local)
solutions of an abstract optimization problem like the TSP. This method is reviewed in the next

section.

3. Solving Optimization Problems: Principle of Operation

This section describes in detail how the dynamical behavior of the network can be used to
solve certain optimization problems. In order to map an optimization problem onto the network,

a suitable representation has to be de�ned and the network parameters Tij and Ii have to be
derived from a suitable mathematical description of the problem. Section 3.1 illustrates the

basic principles by using a simple constraint satisfaction problem, which does not include a
cost function but constitutes an important building block. Sections 3.2 and 3.3 then describe
how a network can be used to solve two well-known optimization problems, the assignment

problem (AP) and the traveling salesman problem (TSP).

3.1. Problem Representation and Constraint Satisfaction

The basic idea behind the operation of optimization networks can be stated as follows: If it

is possible to associate the solutions of a particular optimization problem with the local minima
of the energy function in equation (4), then the network solves the problem automatically by
converging from an initial state to a local minimum, which in turn corresponds to a (local)

solution of the problem. This association requires a suitable problem representation, that is,
an encoding of the problem by using the state variables Vi of the network. For example, the

output Vi of a unit ranging from 0 to 1 can be used to represent a certain hypothesis that is
true for Vi = 1 and is false for Vi = 0. Di�erent hypotheses can be encoded by di�erent units
and the hypotheses might have to satisfy certain constraints. If the �nal state of the network is

supposed to represent a particular solution, it is usually required that the outputs Vi eventually
converge to either 0 or 1 in order to obtain a decision. In this sense, the process of convergence
with intermediate values 0 < Vi < 1 could be interpreted as the simultaneous consideration of

multiple, competing hypotheses by the network before it settles into a �nal state (Tagliarini and
Page 1987).

A typical \building block" of optimization networks is a one-dimensional array of units that
represents a set of n hypotheses under the constraint that only k out of n hypotheses can be

true. Page and Tagliarini (1988) used this example to il lustrate the basic principle of mapping
a problem onto an optimization network. Mathematically, the problem can be stated as

nX

i=1

Vi = k (5)

where
Vi 2 (0; 1)

so that exactly k out of n units are \turned on" in the �nal state (k � n). Note that Vi in

equation (5) is a binary variable limited to the values 0 and 1. The mapping requires that
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equation (5) be in the form of a quadratic function so that the minima of that function can
represent the solutions to the problem. In this example, we can de�ne the problem-speci�c

\energy function" Ek;n as

Ek;n =

 
nX
i=1

Vi � k

!2

+

nX
i=1

Vi (1 � Vi) (6)

The �rst term in equation (6) has minima for all combinations of Vi for which the sum of the Vi
is equal to k, but this alone is not yet equivalent to equation (5) because the additional condition
Vi 2 (0;1) has to be explicitly enforced. This is done by the second term in equation (6), which
has its minima at points where Vi is either 0 or 1. After expansion of the quadratic term using

the relation  X
i

Vi

!2
=
X
i

X
j

ViVj

equation (6) can be rewritten as

Ek;n =

nX
i=1

nX
j=1

ViVj �

nX
i=1

V 2
i �

nX
i=1

Vi (2k � 1) + k2 (7)

The term k2 is independent ofVi and represents only a scaling factor that canbe omitted without
loss of generality because the absolute value of Ek;n is irrelevant in this context. After some
further rearrangement, we get

Ek;n = �
1

2

nX
i=1

nX
j=1

� 2
�
1 � �ij

�
ViVj �

nX
i=1

Vi (2k � 1) (8)

with �ij denoting the Kronecker symbol (�ij = 1 for i = j , but 0 otherwise).

Mapping a problem onto the optimization network is equivalent to determining the network
parameters Tij and Ii by comparing the Liapunov function of the network (eq. (4)) with the

problem-speci�c energy function. In our example, setting E = Ek;n identi�es the solutions of
the problem (minima of Ek;n) with the stable states of the network (minima of E). With

Ek;n expressed as in equation (8), it can be seen that equations (8) and (4) are equal if
Tij = �2(1 � �ij) and Ii = 2k � 1. This means that a network with n units and these parameters
converges from any initial state to a �nal state in which k out of n outputs are on (Vi = 1) and

all other outputs (k � n) are o� (Vi = 0):3 Figure 3(a) il lustrates the resulting architecture, and
�gure 3(b) shows a more abstract, equivalent representation of the same network.

This kind of connectivity with negative feedback connections from every unit to every other
unit is also called lateral inhibition. In this case, there is no negative feedback from a unit to

itself, or no self-inhibition. Each unit i acts to inhibit all the other units with a negative feedback
signal, which has a strength proportional to its current output Vi . Because all the units seem
to compete with each other, these networks with lateral inhibition are also called competitive

networks. Thus, the units that are on after the network reaches a stable equilibrium state are
the winners of the competition.

Which unit converges to an on state and wins the competition depends solely on the initial
values of ui . The time evolution of the network as described by the equations of motion requires

3 Strictly, the values Vi = 0 and Vi = 1 are reached only in the limit because of the characte ristics of the sigmoidal transfer

function; for prac tical purposes, it is su�cient to stop the simulation if Vi > 0:95 or Vi < 0:05, respectively, for all units i.
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(a) Circuit level model of network with stable equilibrium states

in which k out of n units are on (Vi = 1) and k � n units
are o� (Vi = 0).

(b) A more abstract repre-

sentation of same net-
work.

Figure 3. Two architectural representations of a network.

the speci�cation of initial values for ui, which can be regarded as another set of inputs to

the network in addition to the external currents Ii. Because of the symmetric connectivity and
identical values of all weights and of all Ii, the network has anunstable equilibrium point (\saddle
point") at ui = 0 for all units i, which is equivalent to Vi = 0:5 for all i. Thus, an initialization

with ui = 0 for all i would result in no \movement" at all and would prevent the convergence
of the network to any of the stable equilibrium points. Furthermore, an initialization with the

same constant value (not necessarily 0) for all ui would result in a movement to the unstable
equilibrium point ui = 0 for all i. This characteristic might be visualized by imagining the three-
dimensional surface of a \saddle" with the one special curve that has a gradient pointing exactly

to the (unstable) center of the saddle. (See appendix B for an illustration.)

If the initial inputs ui do not have all the same values, then those k units with the initially
largest values of ui (and hence of Vi) suppress the other units more strongly, are less suppressed

by the other units, and thus \grow even stronger" and eventually win the competition. In the
n-dimensional state space spawned by the ui, this amounts to a convergence from an initial

point to the closest equilibrium point. These networks are also called k-winner-take-all networks
because only the k initially strongest units converge to anon state and all other units are reduced
to an o� state. This characteristic can be used for contrast enhancement in signal processing

applications (e.g., vision), and networks that use these or similar principles of competition and
lateral inhibition can be found in di�erent arti�cial as well as biological neural networks. For

k = 1, the network in �gure 3 is simply called a winner-take-all network, and the special case of
n = 2 and k = 1 is equivalent to the well-known \Flip-Flop," which is a bistable memory with
one unit on and the other unit o� or vice versa.

The network analyzed above realizes only the satisfaction of constraints and does not include
a cost function, which usually describes an optimization problem. The following sections
investigate two classical examples of optimization problems, the assignment problem and the

traveling salesman problem.

3.2. The Assignment Problem

The assignment problem (AP) has di�erent variations depending on the de�nition of con-
straints and cost. The AP used for this example is a simple version, sometimes also called a

list-matching problem, with the following speci�cation. Given two lists of elements and a cost
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value for the pairing of any two elements from these lists, the problem is to �nd the particular
one-to-one assignment or match between the elements of the two lists that results in an overall

minimum cost. In order to distinguish clearly between the two lists, we use capital letters to
describe the elements of one list (i.e., X = A;B;C; etc:) and enumerate the elements of the other

list (i.e., i = 1 ; 2; 3; etc:). Additionally, we assume that the two lists contain the same number of
elements n. A one-to-one assignment means that each element ofX has to be assigned to exactly
one element of i. The cost pXi for every possible assignment or pairing between X and i is given

for each problem instance. This generic problem description has many practical applications,
for example, the assignment of jobs i to processors X in a multiprocessor system by minimizing

the cost of the communication overhead.

The AP as speci�ed above can be represented by a two-dimensional quadratic matrix of units
whose outputs are denoted by VXi. Thus, we can de�ne VXi as a decision variable, with VXi = 1
meaning that the element X should be assigned to the element i, and VXi = 0 meaning that the

pairing between X and i should not be made. This way, a solution to the AP can be uniquely
encoded by the two-dimensional matrix of the outputs VX i after all units converge to 0 or 1.

Note that n2 units are required to represent an AP with n elements per list. The constraints
of the one-to-one assignment require that only one unit in each row and column converge to 1
and that all other units converge to 0. Thus, the outputs of the network after convergence

should produce a permutation matrix with exactly one unit on in each row and column. Figure 4
il lustrates this representation by showing the cost matrix as the input for a particular problem

instance and the output of the network after convergence. In this example, the output matrix
determines the assignment of elements A to 7, B to 1, C to 6, etc.

0   0   0   0   0   0   1

1   0   0   0   0   0   0

0   0   0   0   0   1   0

0   0   0   0   1   0   0

0   1   0   0   0   0   0

0   0   0   1   0   0   0

0   0   1   0   0   0   0

1 2 3 4 5 6 7

A

B

C

D

E

F

G

Output matrix

X

i

68  68  93  38  52  83   4

 6   53  67   1   38   7   42

68  59  93  84  53  10  65

42  70  91  76  26   5   73

33  63  75  99  37  25  98

72  75  65   8   63  88  27

44  76  48  24  28  36  17

1 2 3 4 5 6 7

A

B

C

D

E

F

G

Cost matrix

X

i

Optimization network

Figure 4. Exemplary cost matrix for 7�7 assignment problem and corresponding outputmatrix generatedby neural

network. Here, the solution encoded by output matrix is optimal with overall cost c of 165.

Mathematically, the constraints can be expressed as

X

X

VXi = 1 (9a)

for all units i and as X

i

VXi = 1 (9b)

for all elements X with VXi 2 (0; 1). Assuming that the constraints are satis�ed, the overall

cost c of a particular solution becomes simply

c =
X

X

X

i

pXiVXi (10)
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This summation over the whole matrix includes only the cost for the n terms for which VXi = 1,
which represents the overall cost of the assignment. In the example of �gure 4, the overall cost

is c = 165, and it can be veri�ed that this is actually the minimal cost of all possible solutions.

For the mapping of this problem formulation onto the optimization network, the relations

in equations (9) and (10) are included in a quadratic function with minima representing the
solutions of the problem. This is a generalization of the \winner-take-all" problem discussed

in the last section with the augmentation that the AP requires a two-dimensional network and
includes a cost function. The energy function

EAP =
A

2

X
X

 X
i

VXi � 1

!2

+
B

2

X
i

 X
X

VXi � 1

!2

+
C

2

X
X

X
i

VXi (1 � VXi)+D
X
X

X
i

pXiVXi (11)

used by Brandt et al. (1988) is such a quadratic function. The �rst two terms in equation (11)

have minima if the sum over all outputs equals 1 for each row and each column, respectively.
The third term has minima if all VXi are either 0 or 1, and together with the �rst two terms, it

enforces the constraints according to equation (9). The fourth term in equation (11) is simply the
overall cost of a particular solution (eq. (10)) given that the constraints are met. Furthermore,
it is common to use constant factors A; B; C; and D (not to be confused with the row indices

A, B, C, and D of a list as in �g. 4) as additional parameters in equation (11). These parameters
have the e�ect of weighting the constraints and the cost function and allow a �ne tuning of the
performance as will be seen later.

Equation (11) creates an energy landscape in n2-dimensional space with local minima
corresponding to all possible solutions to the problem, i.e. , all permutation matrices. However,

unlike in the winner-take-all problem, the local minima now have di�erent depths determined
by the cost of a particular solution. The energy minimum corresponding to the smallest cost

value (best solution) is called the global minimum.

The next step in mapping equation (11) onto an optimization network is the derivation of

the values for the connections and external inputs. First, we have to extend the notation of the
Liapunov function (eq. (4)) to two dimensions:

E = �

1

2

X
X

X
i

X
Y

X
j

TXi;Y jVXiVY j �
X
X

X
i

VXiIXi (12)

Now, TXi;Y j and IXi can be derived by setting E in equation (12) equal to EAP in equation (11).

The algebraic calculations are analogous to the case of the winner-take-all problem, albeit
somewhat more complex. An expansion of equation (11) results in

EAP =
A

2

X
X

X
i

X
j

VXiVXj +
B

2

X
X

X
i

X
Y

VXiVY i �
C

2

X
X

X
i

V 2
Xi

�

X
X

X
i

VXi

�
A+ B �

C

2
�DpXi

�
+

n

2
(A + B) (13)
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The constant scal ing term n
2 (A + B) can be omitted because the absolute value of EAP is

not important. By using the Kronecker symbol �ij (where �ij = 1 for i = j , but 0 otherwise),

we can express EAP as

EAP =
X
X

X
i

X
Y

X
j

VXiVY j

�
A

2
�XY +

B

2
�ij �

C

2
�XY �ij

�

�
X
X

X
i

VXi

�
A + B �

C

2
�DpXi

�
(14)

By comparing equations (12) and (14) it can be seen that E = EAP if

TXi;Y j = �A�XY � B�ij + C�XY �ij

IXi = A + B �
C

2
�DpXi

9=
; (15)

Figure 5 presents a sketch of the resulting network architecture. We can distinguish between
three di�erent types of connections: (1) lateral inhibitory connections between di�erent units

within the same row (X = Y; i 6= j) with the value TXi;Xj = �A, (2) lateral inhibitory connec-
tions between di�erent units within the same column (X 6= Y; i = j)with the value TXi;Y i = �B,

and (3) feedback from a unit to itself (X = Y;i = j) with the value TXi;Xi = �A � B + C. The
external current includes a constant term A + B � (C=2) as well as the problem-speci�c cost
values pXi .

V11 1i 1n

X1

n1

Xi

ni nn

Xn

VV

V V V

V V V

Xi,Yi

Lateral
inhibitory
connections
within a
column
(T         = -B)

Xi,Xi

Feedback
from a unit
to itself
(T          = -A - B + C)

(I   =  A + B -      - Dp    )
C
2Nine external currents
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Figure 5. Schematic architecture of two-dimensional neural network with connectivity required to solve assignment

problem.

The operation of the network can be simulated by solving the equations of motion (eq. (2)),
which take the general form

CXi
duXi

dt
= �

uXi

RXi
+
X
Y

X
j

TX i;Y jVY j + IXi (16)
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for a two-dimensional network. With the speci�c values from equation (15), the equations of
motion for the AP become

CXi

duXi

dt
= �

uXi

RXi

� A
X

j

VXj � B
X

Y

VY i + CVXi

+ A + B �
C

2
�DpXi (17)

These equations represent a system of nonlinear ordinary di�erential equations (ODE's) that
can be solved by any of the standard numerical methods. (See, e.g., Press et al. 1986.) Because
the system in equation (17) proved to be numerically quite robust, the simple Euler method is

su�cient as long as the stepsize �t is small enough. The values for all the parameters used in
our simulations are given in section 4 where the performance of the network is discussed.

Solving equation (17) requires the speci�cation of initial values for all values of uXi . Unlike
the winner-take-all network, the AP network in �gure 5 does not have an unstable equil ibrium
point (saddle point) at uXi = 0 because the di�erent cost values pXi encoded in the current IXi

break the symmetry and the network converges from uXi = 0 to one of the stable states. Since
we do not assume any prior knowledge of the desired solution, the initialization at uXi = 0

represents an unbiased choice because it does not favor any of the stable states.

Clearly, the goal in operating the AP network is the convergence from an initial state to
the global minimum rather than to some local minimum. Unfortunately, this can be neither

guaranteednor predicted because of the complexity of the nonlinear dynamics. Each equilibrium
point has a basin of attraction which re
ects the shape of the local minimum of the energy

function in the high-dimensional state space. The basins of attraction are determined by the
connections, the current IXi , and the shape of the transfer function Vi = f(ui). For the winner-
take-all network, all stable states have identical basins of attraction, and the �nal state after

convergence is solely determined by the initial value. The AP network has di�erent basins of
attraction because of the di�erent cost values pXi associated with the stable states representing

a solution.

The parameters A; B; C; and D can be used to shape the basins of attractions and thus
in
uence the convergence, but there is no theory that could prescribe speci�c values to achieve

a desired result. Thus, suitable values for the parameters A; B; C; and D as well as for
the gain and o�set of the transfer function have to be found experimentally. It is relatively

easy to �nd an optimal set of parameters for one particular problem instance. However, the
same parameters might perform poorly for a di�erent problem with a new cost function that
determines a di�erent shape of the basins of attraction. Therefore, it is necessary to �nd a set

of parameters that performs well for a variety of problem instances. This experimental process
of adjusting the parameters to optimize the performance requires a number of test cases for

which the best solution is known. These questions concerning the performance assessment are
discussed in section 4.

3.3. The Traveling Salesman Problem

The traveling salesman problem (TSP) was the �rst example chosen by Hop�eld and Tank

(1985) to demonstrate how a neural network could be used to solve optimization problems. The
task of the traveling salesman is to visit n cities in a closed tour in such a way that the overall
length of the tour is minimal. Each city can be visited only once, and the distance between

any two cities is given. The TSP is a classical, NP-complete optimization problem (Garey and
Johnson 1979) for which no algorithm exists that could �nd a (global) solution in polynomial

time. Hop�eld and Tank's TSP example achieved such prominence because it was one of the �rst
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examples of a neural network solving a problem that is intractable for conventional computers.
However, as we will discuss later, the TSP was meant and should be regarded as an example

only, and it does not suggest that a general method has been discovered that solves NP-complete
optimization problems.

The problem representation for the TSP is similar to the AP and requires a two-dimensional
network with outputs VXi . The di�erence is that the �rst index (X) now denotes a city, and the

second index (i) describes the order in which a city is visited along the tour. The representation
of a problem with n cities requires a quadratic matrix of n2 units whose outputs VXi should
converge to binary values. We de�ne VXi = 1 as the decision that city X should be on the

ith position of the tour. Conversely, VXi = 0 determines that city X should not be on the ith
position. With this de�nition, a tour canbe encoded and the problem can be solved as il lustrated
in �gure 6. First, the distances dXY between any two cities X and Y have to be derived from

the city locations, which are randomly distributed on a unit square in the example in �gure 6.
The distance matrix is then provided to the optimization network whose outputs converge to

values that allow the decoding of a tour. In �gure 6, for example, the output matrix determines
that city C is in the �rst position of the tour, city F in the second position, etc., which prescribes
the tour C-F-D-G-E-B-A-C.

0   0   0   0   0   0   1

1   0   0   0   0   0   0

0   0   0   0   0   1   0

0   0   0   0   1   0   0

0   1   0   0   0   0   0

0   0   0   1   0   0   0

0   0   1   0   0   0   0
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City map

Decode tour

Distance matrix (cost)

Generate distances d
from city distribution

XY

City
Position iY

A B C D E F G
Cities

Figure 6. Example of traveling salesman problem (TSP) and representation of a tour by the outputs of the

optimization network after solving the problem. The resulting tour has a length of 2.54.

Since the TSP requires a closed tour, it actually does not matter where the tour starts or

in which direction the tour is traversed. Thus, the output matrix in �gure 6 is not a unique
description of the tour and shifting the columns to the left or to the right leads to the same

result. In general, the problem representation has a 2n-fold degeneracy because n matrices exist
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for each of the two directions of traversal that encode the same tour. Although this degeneracy
might seem undesirable, a more compact or unique representation is not known in this context.

Furthermore, the redundancy introduced by this degeneracy has interesting implications for the
fault tolerance of the network, as will be shown in section 5.

The requirement of the TSP that each city has to be visited exactly once canbe rephrased such
that each city can be in only one position of the tour and each position can be occupied by only

one city. Thus, the constraints are met if the outputs of the network converge to a permutation
matrix with only one 1 in each row and column. This means that the mathematical expression

of the constraints in the form of a quadratic function is identical to the one derived for the
assignment problem. The cost function for the TSP is the overall length l of a tour that should
be minimized. The tour length can be expressed as (Hop�eld and Tank 1985)

l =
1

2

X
i

X
X

X
Y

dXYVXi

�
VY;i+1 + VY;i�1

�
(18)

with dXY denoting the distance between city X and city Y (dXX = 0). The subscripts i

describing the position are de�ned modulo n (i.e., VY;i+n = VY;i) in order to express the fact
that a city in positionn of the tour is adjacent to the city in position 1. Given that the constraints
are met, the triple sum in equation (18) actually results in twice the overall tour length and

is thus divided by 2. Equation (18) can be illustrated by the example in �gure 6. Starting at
position i = 1, the �rst term is 1

2 (dCF + dCA), the second term for i = 2 becomes 1
2 (dFD + dFC ),

etc. Thus, the summation includes the distances between a city in a given position and both
its neighbors on the tour. The reason for including both VY;i+1 and VY;i�1 in the summation
in equation (18) is that it leads to symmetric connection values in the optimization network, as

we will see below. This symmetry is a necessary condition for the stability of the network. (See
appendix B.)

Except for the di�erent cost function, the energy function for the TSP is identical to that of
the AP and can be written as (Brandt et al. 1988)

ETSP1 =
A

2

X
X

 X
i

VXi � 1

!2

+
B

2

X
i

 X
X

VXi � 1

!2

+
C

2

X
X

X
i

VXi (1 � VXi)

+
D

2

X
X

X
Y

X
i

dXYVXi

�
VY;i+1 + VY;i�1

�
(19)

The mapping of equation (19) onto the Liapunov function (eq. (12)) of the network requires
calculations similar to those shown for the AP in the last section and results in the following

network parameters:

TXi;Y j = �A�XY � B�ij +C�XY �ij� DdXY

�
�j;i+1 + �j;i�1

�
IXi = A +B �

C

2

9=
; (20)

The principal di�erence between the TSP connectivity in equation (20) and the AP connectivity

in equation (15) is that the TSP cost function is encoded by the connections TXi;Y j and not by
the external current IXi . The architecture of the TSP network is identical to the AP network
as illustrated in �gure 5, except that the TSP network has a constant IXi and the additional

connections TXi;Y j = �DdXY (�j;i+1 + �j;i�1). These connections that encode the cost function
describe a link between a unit Xi and its neighbors in the two adjacent columns Y; i+1 and

Y; i�1 with the strength �DdXY . Because of the modulo n de�nition of the position index,
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the connections wrap around the network by connecting the �rst and the nth columns. A small
distance between the cities X and Y , for example, is re
ected by a weak inhibition between the

units Xi, Y; i+1, and Y; i�1 which establish a link between X and Y in the tour if VXi = 1 and
VY;i+1 = 1, or VXi = 1 and VY;i�1 = 1, respectively. Thus, two cities with a large distance lead

to a strong inhibition between all units that could establish a link between these cities in the �nal
tour. This competition, which favors short links to minimize the cost and leads to convergence
to an overall valid tour to satisfy the constraints, occurs simultaneously in the network through

the interaction of all units.

The equations of motion that describe the dynamics of the TSP network are

CXi

duXi

dt
= �

uXi

RXi

� A
X
j

VXj � B
X
Y

VY i + CVXi

�D
X
Y

dXY

�
VY;i+1 + VY;i�1

�
+ A + B �

C

2
(21)

The parameters A; B; C; andD; together with the gain and the o�set of the transfer function,

can be used to �ne tune the performance by shaping the basins of attraction as discussed in the
previous section. Initial values for the uXi have to be speci�ed in order to solve equation (21)
numerically. The value uXi = 0 for all Xi represents an unbiased choice, but unfortunately the

TSP equation (21) has an unstable equil ibrium (saddle) point at uXi = 0. This is caused by
the symmetry of the connections and, unlike the AP, by an identical external current for each
unit. Unfortunately, any nonuniform initialization implies a bias toward a particular solution.

Since we do not assume any prior knowledge that could be used in the form of a bias, the only
solution is to keep this bias as small as possible. Thus, we use initial values uXi + � , where � is a

random variable that is uniformly distributed in the interval �10�6 < � < +10�6. Although the
random bias is fairly small, we can observe di�erent solutions for di�erent random initializations.
This complicates the performance assessment because it requires more simulations to derive an

average performance over di�erent random initializations.

Originally, Hop�eld and Tank (1985) proposed a di�erent energy function for the TSP that
used an alternative formulation to enforce the constraints. Their original TSP energy function

was

ETSP2 =
A

2

X
X

X
i

X
j6=i

VXiVX j +
B

2

X
i

X
X

X
Y 6=X

VXiVY i +
C

2

 X
X

X
i

VXi� n

!2

+
D

2

X
X

X
Y

X
i

dXY VXi

�
VY;i+1 + VY;i�1

�
(22)

The �rst two terms in equation (22) have a minimum (besides the trivial case VXi = 0 for all Xi)
if all cross products VXiVXj for i 6= j within a rowvanish andVXiVY i forX 6= Y within a column

vanish. This is the case if there is only one nonzero output in each row and column. The third
term in equation (22) has a minimum if the sum over all outputs equals n. Togetherwith the �rst
two terms, this determines an overall minimum if the outputs represent a permutation matrix.

The mapping of equation (22) onto the Liapunov function (eq. 12)) results in the values

TX i;Y j = �A�XY � B�ij + (A + B) �XY �ij � C �DdXY

�
�j;i+1 + �j;i�1

�
IXi = nC

�
(23)
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and in the corresponding equations of motion

CXi

duXi

dt
= �

uXi

RXi

� A
X

j 6=i

VXj � B
X

Y 6=X

VY i � C
X

Y

X

j

VY j

�D
X

Y

dXY

�
VY;i+1 + VY;i�1

�
+Cn (24)

The main di�erence between Hop�eld and Tank's original formulation (eqs. (22){(24)) and

the modi�cation (eqs. (19){(21)) is the global inhibition term �C in Hop�eld and Tank's
equation (23) as well as an external current term that depends on the problem size n . Global

inhibition means that there is an inhibitory connection from every output to every other input
with a connection strength C in addition to the lateral inhibition within each row and column
of strength A and B , respectively. This global connectivity results from the global formulation

in equation (22), which states that the sum of all outputs should be equal to n. In contrast, the
energy function in equation (19) uses only local rules when it requires that each output should
converge to either 0 or 1.

Although both approaches seem to be equivalent in the sense that both enforce the conver-

gence to a permutation matrix while using an identical cost function, their performance turns
out to be considerably di�erent. In trying to recreate Hop�eld and Tank's original results, many

people have reported poor results; that is, either the network failed completely to converge to a
valid tour (permutation matrix) or the solution was clearly far from the global optimum. (See
Wilson and Pawley 1988; Van den Bout and Miller 1988; Hedge, Sweet, and Levy 1988.) These

problems do not occur when the alternative formulation of the energy function in equation (19)
is used (Brandt et al. 1988). However, the performance still depends strongly on the parameter

values, on the initial values, and on the cost function of the underlying city distribution.

Before we address the di�culties of a quantitative performance assessment in the next section,
we want to il lustrate the behavior of the network in solving two 10-city distributions. For these
examples, we used Brandt's equations (eqs. (19){(21)) with the parameters A = B = 2, C = 4,

D = 1, � = 2:5, and us = 0:5. The equations of motion are solved by Euler's method with
�t = 0:1. The values for Ci and Ri are normalized to 1 without loss of generality. Figure 7
shows the two 10-city examples and the network in its initial state (VXi)t=0 = 0:5 + � with � as

a small random bias (�10�6 < � < +10�6). The output value VXi of each neuron is represented
in �gure 7 by the size of the black square. This becomes more apparent in �gures 8 and 9 which

show the outputs of the network after convergence together with the corresponding tours.

An important point to emphasize is that the di�erent solutions in �gures 8 and 9 are caused
only by di�erent initial values and not by any other parameter variations. This illustrates
the strong impact of the (unavoidable) random bias, even if it is very small. The examples

also illustrate that the solutions of the network with the exception of �gure 9(c) are indeed
suboptimal. However, the subjective (visual) impression of a bad tour is not always re
ected

by a large tour length. An obviously poor solution with a twist as in �gure 8(c) has a length
of 2.83, which is quite close to the global optimum of 2.71. As we will discuss later, it is possible
to improve the performance for speci�c cases by �ne tuning the parameters, but this can lead to

invalid answers in other cases. The parameters used here are not optimized for these examples
but produce consistently valid solutions according to the results of the next section.

Finally, �gure 10 shows the time evolution of a network in di�erent snapshots during the
convergence. Because of the mutual inhibition, the outputs quickly decrease from their initial

values of 0:5 + � to very small values. It can be seen in �gure 10(a) that the �rst increase
in activity occurs at locations that correspond to the \city clusters" C-D-H and A-E-I-J. This

result occurs because the small distances between the cities within each cluster generate less
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Figure 7. Initializations of network before solving TSP and two examples of 10-city problems with cities randomly

distributed on a unit square.

inhibition between the units at the corresponding locations. During the convergence of the
network, multiple choices are considered simultaneously before the network eventually locks into

a particular solution. Figure 10 gives an intuitive feeling for the meaning of the term parallel

distributed processing that is used by some researchers as a synonym for neural computing
(Rumelhart, McClelland, and PDP Research Group 1986).

4. Performance Assessment

The performance assessment would not be an issue if the network simply found the global
solution all the time. In fact, this would imply a solution to the NP-completeness problem.

However, we have already seen that the network converges to local minima and usually produces
good but suboptimal solutions. Then the question becomes how good is good? and the need for

a performance measure arises. One obvious measure of performance is, of course, the resulting
cost value after convergence, given that the network converged to a valid solution. For the TSP,
this is simply the distance of the tour, and the smaller the distance the better the network

performs. Unfortunately, the performance of a given network varies considerably for di�erent
problem instances (data sets), for di�erent problem sizes, for di�erent network parameters,

and, in the case of the TSP, also for di�erent initializations of the network. This variation
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Figure 8. Di�erent solutions of 10-city problem in �gure 7(a) after di�erent initializations of network.
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Figure 9. Di�erent solutions of 10-city problem in �gure 7(b) after di�erent initializations of network.
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(e)  Final sample. (f)  Network solution.

Figure 10. Time evolution of output values of network solving 10-city problem of �gure 7(b). Note that solution is

identical to �gure 9(a) although it is encoded by a di�erent output matrix.

impedes a meaningful, general performance assessment if only one or two example problems are
considered, because it is always possible to �ne tune the network parameters for a particular

problem instance.
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Therefore, it is necessary to generate a representative number of examples that allow a
statistically meaningful statement to be made about the average performance. Furthermore,

some reference frame is needed for the comparison of the network results because just the average
over the cost values is generally not su�cient. For example, the average of the tour lengths of

100 di�erent TSP city distributions is not signi�cant unless the problem size is constant and
the statistical distribution of the input data (city coordinates) is known. The simplest reference
for a comparison is the average cost value of a random guess, that is, the average or expected

value of the distribution of all possible answers for a particular problem instance. A performance
assessment based on the estimated distribution has led to statements in the literature that, for

example, a solution is approximately among the 108 best out of 4:4 � 1030 possible solutions
(Hop�eld and Tank 1985), or that 92 percent of the solutions are among the best 0.01 percent of
all solutions (Tagliarini andPage 1987). Although this gives some impression of the performance,

it can hardly be considered a practical measurement.

The solution needed is a performance measure that can answer the following questions:

1. What is the e�ect of a parameter variation or a modi�cation of the energy function on the
performance?

2. How good is the solution with respect to the global optimum or (the best known answer)?

3. How does the performance change with problem size?

4. With respect to fault tolerance, how does the performance degrade under the presence of
(simulated) faults?

5. What is the performance di�erence of two networks solving two di�erent problems; that
is, are there problems that are \easier" for the network to solve?

Our approach to the performance assessment is based on the fact that the distribution of
all possible answers for every instance of an optimization problem can be characterized by two
values, the global optimum (minimum cost) copt and the average cost value cav. With c denoting

the cost value of a given result derived by the network, the relation between c, copt, and cav can
be used as a performance measure. By mapping those absolute values onto a normalized scale

as il lustrated in �gure 11, we de�ne the solution quality q as

q =
cav � c

cav � copt
(25)

Thus, the solution quality has a value q = 1 if c = copt and q = 0 if c = cav, with 0 < q < 1 for
cav > c > copt.

Obviously, the calculation of q requires the knowledge of the two reference values copt and
cav for each problem instance (e.g., for each city distribution of the TSP). Obtaining values for
cav is usually no problem since it requires only a su�cient number of random trials. In case

of the TSP, for example, a random but valid tour is generated repeatedly and the resulting
tour lengths are averaged to obtain cav. The fact that we have to know the global optimum
copt appears to be a paradox at �rst glance, and one might ask why we would use an ANN

to solve a problem for which the best possible solution is already known. The answer is, of
course, that we want to test the network by using well -known model problems, and for such

a test it is reasonable to compare the results of a new method (i.e., ANN's) with the results
of the best existing method. In fact, in almost all cases, where ANN's have been applied to
optimization problems, there are conventional algorithms readily available to provide values for

copt. For NP-complete optimization problems like the TSP, for which the global optimum is
generally unknown, the best available heuristic method like the Lin-Kernighan algorithm can be

used as a reference. (See Lin and Kernighan 1973.) If copt is not the global optimum and if the
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Figure 11. De�nition of solution quality q by mapping absolute values of c, copt, and cav onto normalized scale.

network happens to generate a better answer, then the event c < copt is re
ected by a solution

quality q > 1. Conversely, the value for q becomes negative if the solution of the network is
worse than the random average (c > cav). Thus, the normalized solution quality is independent
of a particular problem instance and of the problem size.

In the following discussion we will demonstrate the use of the de�ned solution quality to
assess and compare the performance of the two model problems, the TSP and the AP. In order

to get statistically relevant results for the TSP, we generated a test set containing 10 di�erent
city distributions for each problem size (n = 10; 20; and 30) and 5 di�erent distributions for

n = 50 and 100. Each city distribution was generated by placing the cities randomly on a unit
square according to a uniform probability distribution. The values for cav were obtained by
averaging over 105 random trials for each city distribution. The Lin-Kernighan (1973) algorithm

was used to generate �ve answers for each city distribution, and the best result was chosen as copt.
After obtaining the values for cav and copt for each city distribution, it is possible to calculate

the solution quality q according to equation (25) after each simulation run of the network. Since
the network performance varies considerably for di�erent random initializations, 10 di�erent
initializations were used for each city distribution of n = 10 to 50, and 5 initializations for

n = 100. Thus, a single sweep through the test set requires 375 simulation runs, and the value
of q was calculated after each run. The average values of q are shown in table 1 for di�erent
approaches and problem sizes.

The possibility also exists that the network will not converge at all to a valid solution because
it has gotten stuck in a local minimum (spurious attractor) that does not correspond to a

permutation matrix. Since this event is not re
ected by the solution quality, we also show in
table 1 the proportion of runs with valid solutions. The average value for q includes only runs

that produced valid solutions. In an attempt to recreate Hop�eld and Tank's (1985) original
results, we performed a run of the test set using their original equations (eqs. (22){(24)) with
the parameters A = B = 500, C = 200,D = 500,� = 25, and us = 0 as described. Furthermore,

Hop�eld and Tank used an additional constant term for the external current according to
IXi = C(n + 5) = 200n+ 1000, which e�ectively shifts the transfer function. They also used

the initialization (VXi)t=0 = (1=n) + �; where � is a small random number.
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Table 1. TSP Values of Solution Quality (q) for Di�erent Approaches and Problem Sizes

[Proportions of valid solutions are given in parentheses]

Di�erent approaches Values of q for problem sizes (number of cities) of|

using TSP n = 10 n = 20 n = 30 n= 50 n = 100

Original method of Hop�eld 0.905 0.903 0.851

and Tank (1985) . . . . (0.15) (0.11) (0.02) (0)

Modi�ed method of Brandt 0.829 0.816 0.830 0.852 0.902

et al. (1988) . . . . . . (1.00) (1.00) (1.00) (1.00) (1.00)

Di�erent parameters of Brandt 0.936 0.926 0.923 0.913 0.927

et al. (1988) . . . . . . (0.98) (0.97) (0.84) (0.58) (0.18)

The equations of motion (eq. (24)) were solved by Euler's method with time steps �t between
10�5 and 10�6. A larger �t can cause numerical errors and results that do not re
ect the actual
behavior of the system. The �rst row in table 1 shows the results of our simulation that con�rm

the reported di�culties (Wilson and Pawley 1988; Hedge, Sweet, and Levy 1988; Brandt et al.
1988) in using Hop�eld and Tank's original equations. Even for n = 10 cities, only 15 percent

of the runs converged to a valid solution, and since none of the 50-city cases produced a valid
answer, we did not even attempt to solve a 100-city problem.

Although we experimented extensively with parameter variations, we did not �nd a set of
parameters that improves the performance signi�cantly. However, it is possible to �ne tune the
parameters for one particular city distribution to obtain quite impressive results. Unfortunately,

the same parameters usually produce invalid or poor results for other city distributions. This
characteristic has led to some confusion in the literature with performance claims based on

speci�c examples that were di�cult to reproduce and were not valid in general. (See Wilson and
Pawley 1988.) This also demonstrates the importance of an average performance assessment
over many examples. Since Hop�eld and Tank's original equations (eqs. (22){(24)) are not the

only way to express the problem, we tried di�erent modi�cations (Protzel, Palumbo, and Arras
1989; Protzel 1990) and obtained the best results with the approach published by Brandt et al.
(1988) that is described in section 3.3. By using Brandt's energy equation (19) and his original

parameters A = B = 2, C = 4, D = 1, � = 2:5, and us = 0:5, we obtained the results shown in
the second row of table 1. An additional di�erence of Brandt's approach is an initialization in the

center of the hypercube with (VXi)t=0 = 0:5 + � and a random variable � uniformly distributed
in the range �10�6 � � � 10�6. Because of the lower gain and smaller values of the parameters,
we could use the value �t = 0:1 to solve the equations of motion (eq. (21)).

As shown in the second row of table 1, this modi�ed energy function produced consistently
valid tours across the full range of problem sizes. However, the average solution quality was lower

than the valid cases of Hop�eld and Tank's results. We tried di�erent parameters for Brandt's
energy equations to improve the quality. The results for A = B = 5, C = 2, andD = 3 are listed
in the third row of table 1. The parameters for the transfer function and the initialization are

the same as in the previous case, except that we used �t = 5 � 10�3. We can see that the
average quality has indeed been improved, but at the price of occasional invalid answers whose

frequency increases with the problem size. There is a fundamental trade-o� between obtaining
consistently valid (but sometimes poor) answers for a large number of di�erent problem instances
and very good answers for a small number of instances. One obvious and extreme case of this

trade-o� is setting D = 0, which cancels the cost function and reduces the problem to pure
constraint satisfaction. Then, we would always expect valid answers, but with anaverage quality

of q = 0. The underlying problem with the TSP is the quadratic cost function that maps the
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problem-speci�c distance values multiplied by the parameterD onto the connections, where they
are added to the values that enforce the constraints as in equations (20) or (23). Qualitatively

speaking, large distance values in an extreme problem case or a large factor D might override
the connectivity values that enforce the constraints and thus interfere with the convergence to

a valid solution.

This problem does not occur with the assignment problem because the energy function for the
AP (Hop�eld 1982) maps the problem-dependent cost values to the external current (eq. (15))

and not to the connection values. This is actually the only di�erence between the AP and the
TSP networks, as far as the architecture is concerned, and it makes a performance comparison

between the problems especially interesting. As before, we generated a test set of 10 problem
instances for each size of 10, 20, 30, 50, and 100 elements. The cost values were randomly
generated with a uniform distribution between 0 and 1. The AP as de�ned here is not an NP-

complete problem, and relatively simple and fast algorithms exist that �nd the global solution.
We used such a textbook algorithm (Syslo, Deo, and Kowalik 1983) to obtain values for copt
and generated the average values cav from 105 random solutions for each problem instance. The
�rst row of table 2 shows the simulation results for the parameters originally used by Brandt

et al. (1988) with the additional values � = 2:5, us = 0:5, �t = 0:05, and the initialization
(uXi)t=0 = 0. The other two rows show the e�ect of parameter modi�cations, and here the

values � = 25, us = 0, and �t = 5 � 10�5 were used with the same initialization. As discussed
in section 3.2, no random bias in the initial values is required for the AP; in fact, the network
converges to the same solution despite some small random noise. This simpli�es the performance

assessment considerably because we now need only one simulation run for each problem instance.

A comparison between tables 1 and 2 reveals a striking di�erence between the TSP and the
AP results. For the AP, none of the runs failed to converge to a valid tour, and moreover the

solution quality is excellent. For the parameter sets 2 and 3 in table 2, the network actually
found the global optimum in most cases or generated an answer extremely close to it. We can

conclude that the encoding of the cost values by the external current is the cause for the enormous
performance improvement because, unlike with the TSP, the cost values do not interfere with
the connection values that enforce the constraints. Thus, the distinction between a quadratic

and a linear cost function becomes an important classi�cation that helps to identify problems
that are more suitable to an ANN implementation. The demonstrated ability to compare the

results of two di�erent optimization problems proves the versatil ity of the solution quality as a
performance index and justi�es the additional e�ort needed to obtain values for copt and cav.

Table 2. AP Values of Solution Quality (q) for Di�erent Parameters and Problem Sizes

[Proportions of valid solutions are given in parentheses]

Parameter Values of q for problem sizes (number of e lements) of|

set Parameter n= 10 n = 20 n = 30 n = 50 n = 100

1 A = B = 2; C = 2; D = 1 0.988 0.960 0.975 0.978 0.987

(1.0) (1.0) (1.0) (1.0) (1.0)

2 A = B = 200; C = 20; D = 50 1.0 0.999 0.999 0.998 0.998

(1.0) (1.0) (1.0) (1.0) (1.0)

3 A = B = 200; C = 3; D = 50 1.0 0.999 1.0 1.0 0.999

(1.0) (1.0) (1.0) (1.0) (1.0)

Another aspect to the comparison between optimization networks and conventional algo-

rithms is the time it takes to solve a problem of a particular size. For example, it takes more
than 1 day of processing time on a VAX-11/780 (manufactured by Digital Equipment Corpo-

ration) to simulate the neural network solving a single 100-city problem. This is actually not
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surprising because the simulation involves the numerical solution of 104 ODE's for several thou-
sand iterations. However, the Lin-Kernighan algorithm provides an answer (usually better) in

about 3 minutes. Furthermore, 100 cities are not even considered an interesting problem size
for the TSP. Although an analog hardware implementation of the neural network might solve

the same problem in mill iseconds, the need for a very large-scale integrated (VLSI) chip with
104 operational ampli�ers to solve a 100-city TSP is truly questionable. Thus, we do not think
that large-scale, classical or NP-complete optimization problems are suitable applications for

optimization networks other than as examples or model problems. However, there are certain
small-scale, special-purpose, real-time control problems that could bene�t from the key charac-

teristics of an ANN hardware implementation: e.g., speed, low weight and power consumption,
and built-in fault tolerance.

Thus, our actual objective is not to compete with conventional methods in solving classical
optimization problems but to investigate the fault tolerance of the network for special-purpose
applications. The above performance assessment is a prerequisite for this investigation. In the

next section, we stil l use the TSP and AP as model problems to demonstrate and to quantify
the performance degradation under the presence of simulated faults in the network. Section 6
then describes an application in which an optimization network controls the recon�guration of

a multiprocessor system. There, the fault tolerance of the network is the decisive factor for the
operation of the system.

5. Fault Tolerance

Fault tolerance is a qualitative, general term de�ned as the ability of a system to perform its
function according to the speci�cation in spite of the presence of faults in its subsystems. This
de�nition is very unspeci�c, and a system that is said to be fault tolerant does not necessarily

tolerate any number of faults of any kind in any of its subsystems. A speci�c way to quantify
fault tolerance is to determine the performance degradation in the presence of certain faults in

certain subsystems, given that some measure of performance exists.

Only relatively few studies in the literature focus explicitly on the fault tolerance of ANN's,

and the results are di�cult to generalize because of the di�erent models and objectives. For
example, Hinton and Shallice (1989) injected faults into a neural network trained to perform a
particular linguistic task. They showed that the performance degradation of the network bears

a qualitative resemblance to the degraded ability of neurological patients with a certain brain
disorder. Petsche and Dickinson (1990) used a special network architecture to investigate a

self-repair mechanism that automatically activates spare nodes (neurons) if one of the nodes
is inoperable, i.e. , permanently inactive (\stuck at 0"). A study that is more closely related
to our approach was performed by Belfore and Johnson (1989) who also investigated the e�ect

of faults in an optimization network that solves the TSP. However, they used only a single
six-city distribution with single-node faults in their simulations, which is insu�cient to draw

any statistically meaningful conclusion as we will show below.

According to �gure 1, there are only two di�erent components in a hardware implementation
of an optimization network: the neuron or active element in the form of an operational ampli�er,

and passive interconnections in the form of resistors. In the following, we will �rst consider two
types of faults of the active elements that correspond to the highest failure rate. These are

commonly called stuck-at-1 or stuck-at-0 faults and occur if the output of a unit (ampli�er) is
permanently pulled to the highest potential or to the lowest (ground) potential, respectively.
The fault locations are randomly selected with one important exception: we do not allow two

stuck-at-1 faults to occur within the same row or column. The reason is that such an event
would automatically preclude a valid solution since the permutation matrix allows only one 1 in

each row and column. In simulating multiple faults, we study a succession of either stuck-at-1
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or stuck-at-0 faults, but not a mixture of both types. We use the same locations for stuck-at-1
and stuck-at-0 faults in order to compare the e�ect of a di�erent fault type. Otherwise, it would

not be possible to tell whether di�erent results are caused by the di�erent locations or by the
di�erent fault types. This means that the above exception is also valid for stuck-at-0 faults,

although two or more stuck-at-0 faults in the same row or column do not necessarily interfere
with a valid solution.

Before we present the results of our large-scale simulations, we want to illustrate the impact

of stuck-at-1 faults for several examples. Figures 12 and 13 use the same 10-city TSP examples
from section 3.3 to show the e�ect of 4 stuck-at-1 faults simultaneously present in the network.
It can be seen that the networks still converge to a solution; however, the resulting tour is clearly

worse than in the fault-free cases of �gures 8 and 9. In order to understand these results, it is
necessary to recall the de�nition of a fault in this context. Since we interpret the neuron output

as a decision about the position of a city on a tour, a stuck-at-1 fault represents such a decision
and thereby predetermines a part of the overall tour. Because of the degeneracy of the TSP
problem representation, a single stuck-at-1 fault does not constrain the network at all since the

absolute position of a city does not matter. The e�ect of two simultaneous faults is immediately
obvious if the two faults occur in adjacent columns. As shown in �gures 12(a) and 13(a), such
an event predetermines a link between two cities because the cities are in successive positions

on the tour. Figures 12(b) and 13(b) show how this imposed link a�ects the overall tour.

Surprisingly, this predetermination ofparts of a tour by the injected faults does not necessarily
lead to a performance degradation. Since the network usually �nds a suboptimal solution in

the fault-free case, it is conceivable that a lucky combination of fault locations leads to a tour
that is actually better than one without any faults. Although these events are rare, we could

observe occasional improvements under the presence of multiple faults. Stuck-at-0 faults play a
less prominent role because they only preclude a city from being in a certain position instead of
predetermining it. Thus, the network has even more ways to \work around" those faults, and

we would expect a minimal impact from even multiple stuck-at-0 faults.

Figure 14 shows the e�ect of injected stuck-at-1 faults on a network solving the assignment
problem. The parameters used for this example are those listed in table 2 (in parameter set 2).

The solution shown in �gure 14(a) represents the global optimum. Thus, if the best answer is
derived under fault-free conditions, any fault can only decrease the performance. Because the
AP representation does not have the degeneracy like the TSP, even a single stuck-at-1 fault

precludes a convergence to the global solution. Figures 14(b){(f) illustrate how the multiple-
fault locations marked by the shaded squares become part of the solutions and how the network

converges to accommodate these constraints.

We analyzed the network solutions in �gures 14(b){(f) by using our conventional algorithm
and by taking the faults into account as additional constraints to the problem. Interestingly,

the network arrived at the same results, which means that it stil l found the new global
optimum under these fault conditions. Thus, we could de�ne a conditional performance measure

by viewing the faults as constraints to the problem and assessing the network performance

accordingly. Although we can see the obviously unavoidable performance degradation in absolute
terms, the conditional performance of the AP network is stil l optimal. As with the TSP,
stuck-at-0 faults preclude a particular solution and have no e�ect at all unless the fault location

coincides with an active unit that is part of the solution; in this case, the network treats the
fault as an additional constraint and converges to the best possible solution.

Although the above examples provide some (qualitative) insight into the fault-tolerance

characteristics, it is still necessary to substantiate this impression by large-scale simulations
in order to obtain more rigorous results. We used the test set of problem instances as de�ned

in the last section and the same parameters that correspond to the results in the second row
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(b) Final result.

Figure 12. Solution of 10-city problem in �gures 7(a) and 8 by network with 4 stuck-at-1 faults (tour length

of 3.27). Fault locations are visible during initialization in part (a). Note that the two faults in adjacent

columns predetermine a link between cities B andD.

of tables 1 and 2. Only these parameter values were used for the TSP because we regard

the consistent convergence to a valid solution in the fault-free case as a prerequisite for any
fault-injection experiments. Figure 15 shows the results for di�erent problem sizes. The results
con�rm our conjecture that stuck-at-0 faults have no e�ect for the AP and practically no e�ect

for the TSP. In case of the TSP, the injected faults override the random initialization and the
network converges without or independent of any initial bias to the same solution. Stuck-at-1

faults result in an almost linear performance degradation for the AP, whereas the redundancy
of the TSP representation is re
ected in a relatively slower performance decrease as the number
of faults increases. When the number of stuck-at-1 faults approaches the number of cities or

elements, the performance for both the TSP and the AP approaches zero as in �gure 15(a),
which corresponds to the random average. This is because the randomly selected fault locations

eventually predetermine a random tour. Most importantly, none of our simulations failed to
converge to a valid tour because of one or more injected faults.

In another experiment, we studied the e�ect of connection faults on the performance of an

optimization network. Although the failure rate of a simple resistive connection is orders of
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(b) Final result.

Figure 13. Solution of 10-city problem in �gures 7(b) and 9 by network with 4 stuck-at-1 faults (tour length

of 3.77). Fault locations are visible during initialization in part (a). Note that the two faults in adjacent

columns predetermine a link between cities B andD.

magnitude less than that of an operational ampli�er, the large number of connections (e.g.,

2n3 � 2n2 connections for an n-element AP compared with n2 neurons) increases the overall
probability of such a fault. The failure of a connection with the resistance R leads either to a
short circuit (R = 0) or to an open connection (R = 1). Because the failure rate of a connection

short circuit is far less than the rate of an open connection, we simulated only the latter fault
type. In order to limit the number of required simulations, we used only a network solving the

AP for this experiment because this network exhibited the best performance and greatest fault
tolerance in our previous studies.

Figure 16 shows the resulting performance degradation of an ANN solving a 10-element AP
for up to 50 simultaneous open connections. The parameters for the AP network are the same
as in the previous fault-injection runs. The locations for the connection faults were randomly

selected. For each fault scenario we ran 50 di�erent problem instances, and �gures 16(a) and (b)
show the average, worst, and best performance for the two di�erent values of the parameter

D = 50 and D = 120. The parameter D is a factor multiplied by the cost values according to
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(a) No faults; c = 165. (b) One stuck-at-1; c = 185. (c) Two stuck-at-1; c = 243.
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(d) Three stuck-at-1; c = 310. (e) Four stuck-at-1; c = 361. (f) Five stuck-at-1; c = 381.

Figure 14. E�ect of up to �ve multiple stuck-at-1 faults on network solving assignment problem of size n = 7. Cost

matrix is shown with circled elements indicating network solutions (neurons that converged to 1) and shaded

squares indicating fault locations. Note that parts (b){(f) are still optimal solutions under additional constraints

imposed by faults.

equation (15), and a large value of D enforces solutions with better quality. This is re
ected by
�gure 16(b) which shows a better average quality as well as a lower variation in the quality of

the best and worst solutions compared with �gure 16(a). This high variation in �gure 16(a) is
again a reminder of how much the results depend on the chosen problem instance and that the

study of a single instance as in Belfore and Johnson (1989) can lead to grave misinterpretations.

Although the performance results suggest that a higher value of D would be desirable, there
is a trade-o� shown in �gure 16(c). Surprisingly, although none of the \stuck-at" faults led to
an invalid solution, we do observe invalid solutions for some problem instances after a certain

number of open connections. Figure 16(c) shows the percentage of valid solutions, and it can
be seen that a lower value of D tolerates more faults before the �rst case of an invalid solution

occurs. We have already seen this trade-o� between consistently valid and high-quality solutions
in the fault-free cases of section 4, and it is very interesting to observe that the same e�ect plays
an important role with respect to the fault tolerance. Because an invalid solution is the worst

case and equivalent to a total system failure, a smaller value4 of D is obviously preferable for the
AP, especially since it does not a�ect the fault-free performance at least for the cases shown in

�gures 16(a) and (b). However, for a value of D > 120, we could also observe some invalid results

4 Unfortunately, these qualitative recommendations about the relative size of parameter values do not necessarily hold

in general. Since no theory exists to pre sc ribe parameter values for optimization networks, optimal values have to be

determined experimentally for each problem.
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(c) n = 30.

Figure 15. Performance degradation of an ANN solving traveling salesman problem (TSP) and assignment prob-

lem (AP) after injections of stuck faults for di�erent problem sizes. Values are averages over 10 di�erentproblem

instances for each size with additionally 10 di�erent random initializations each for the TSP.
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Figure 16. Performance degradation of an ANN solving assignment problem (AP) after multiple connection failures

(open connections). Values in parts (a) and (b) are the best, worst, and average performance of 50 di�erent

problem instances, and values in part (c) indicate how many of the 50 runs for each fault scenario converged to

a valid solution.
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in the fault-free case. This shows that the \quality-validity trade-o�" is a general phenomenon
and that connection faults only increase the likelihood of invalid solutions.

In summary, we have demonstrated that optimization networks exhibit a surprising degree

of fault tolerance which is achieved without the explicit use of redundant components. Because
the fault-tolerance characteristics are inseparable from the functional characteristics, we can say
that the fault tolerance of the ANN is built-in or inherent. However, when we make a statement

about the fault tolerance, we implicitly assume a failure condition or failure criterion of the
system, which is the threshold below which it can no longer perform its function according
to the speci�cation. For example, consider the AP network that always generates the global

optimum under fault-free conditions. If we specify this as the only acceptable performance level,
then any stuck-at-1 fault that causes the network to generate a good but suboptimal answer is

not acceptable and, with respect to this fault type, the network is not fault tolerant at all. On
the other hand, if we specify a solution quality of 0.8 as the acceptable performance threshold,
then anAP network of size n = 30 can tolerate (on the average) �ve stuck-at-1 faults andan even

larger number of stuck-at-0 or connection faults. Thus, the degree of fault tolerance depends on
our de�nition of acceptable performance.

The above discussion suggests an application domain for optimization networks where it is
not necessarily important to generate the best possible solution to an optimization problem, but

where a reasonably good answer has to be obtained fast and reliably. In the next section we
present an example of such an application with the network performing a critical real-time task
as a component of a fault-tolerant multiprocessor system.

6. Application of an ANN for the Task Allocation in a Distributed

Processing System

In the following discussion we will investigate the application of an optimization network in
the context of a distributed processing system that operates under hard real-time constraints

and has to meet very high reliabil ity requirements. An example of such a system is the
Software-Implemented Fault-Tolerance (SIFT) computer used by NASA as an experimental

vehicle for fault-tolerant systems research (Palumbo and Butler 1986). The SIFT architecture
can accommodate up to eight processors in a fully distributed con�guration with a point-to-
point communication link between every pair of processors. It can be used, for example, to

execute real-time 
ight control tasks as part of an aircraft control system. Because the system
operates in a distributed fashion, each processor executes a certain number of tasks according

to a predetermined task-to-processor allocation table.

The architecture achieves an extreme fault tolerance by its capability to detect and isolate

possible hardware faults. The isolation of a defective processor requires a recon�guration of the
system and a reallocation of all tasks among the remaining processors. Thus, it is not the initial
task allocation but the reallocation of tasks after a processor failure that is time critical and has

to be performed by a highly reliable mechanism. The use of lookup tables for the reallocation
has the disadvantage that the number of combinations of tasks and processors is very large

for even moderately sized systems (Bannister and Trivedi 1988) and grows exponentially after
multiple processor failures. Although it is possible to use conventional algorithms to solve the
problem, these methods are often computationally too expensive because of the hard real-time

constraints and require an undesirable overhead because the algorithms have to be executed in
a distributed environment without any hierarchical control.

Since �nding that the best allocation of tasks among the processors can be formulated as
a constrained optimization problem, we will demonstrate how an optimization network can be

used to solve this problem. The distributed system considered here resembles a simpli�ed version
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of the SIFT computer and is based on a model described by Bannister and Trivedi (1988) in
which a conventional heuristic algorithm is used to solve this task allocation problem. We will

later use this algorithm as a benchmark to assess the ANN performance. The system has to
execute n tasks and consists ofm identical processors. Each task is replicated into r clones that

are executed by di�erent processors and submitted to a majority voter in order to detect and
mask possible hardware failures. By assuming periodic real-time tasks for a typical 
ight control
system, the number of instructions per execution of task j , the frequency of execution, and the

execution rate of the processor determine the load that a certain task places on a processor,
which is called the utilization zj of task j . A particular allocation can be described by a variable

Vij with Vij = 1 if task j is scheduled on processor i, and Vij = 0 otherwise. Then, the variable
pi =

P
j

zjVij represents the overall load or util ization of processor i under the allocation Vij .

The task allocation has to observe the constraint that each task must be executed by exactly
r di�erent processors in order to allow a majority vote. Additionally, the allocation should

be done in a way that achieves at least an approximate load balancing among the processors.
A load balancing in a distributed processing system is obviously desirable, and Bannister and
Trivedi (1988) discuss several reasons why an imbalance potentially decreases the reliabil ity

of the system. They also show that minimizing the sum of the squared processor utilizationsP
i

p2i also minimizes the statistical variance of the pi variables, which is a direct measure of the

imbalance. We further assume that there are enough processors to accommodate a (balanced)

assignment without capacity or scheduling violations.

The task allocation problem (TAP) is represented by an optimization network consisting of
a two-dimensional array ofm � n neurons or elements in which the output Vij of an element is
boundedbetween 0 and 1 and corresponds to the hypothesis that task j is assigned to processor i.

Figure 17 il lustrates this problem representation for an example in which 10 triplicated tasks
are allocated to 5 processors. In order to map the task allocation problem onto the network, it

has to be expressed as a function whose minima correspond to (local) solutions of the problem.
With the above de�nitions, we can de�ne the following energy function

ETAP =
A

2

nX
j=1

 
mX
i=1

Vij � r

!2

+
B

2

mX
i=1

nX
j=1

Vij
�
1 � Vij

�
+
D

2

mX
i=1

0
@ nX
j=1

zjVij

1
A

2

(26)

The �rst term in equation (26) has a minimum if the constraint is met (i.e. , each task is executed

by exactly r processors), the second term forces the outputs to converge to either 0 or 1, and
the third term represents the cost function to be minimized. Mapping equation (26) onto the

energy function (eq. (12)) yields the following values for the interconnections and the external
current

Tij;lk = �A�jk + B�il�jk �Dzjzk�il

Iij = Ar �
B

2

9>=
>; (27)

and the equations of motion

Cij
duij

dt
= �

uij

Rij

� A
X
l

Vlj + BVij

�Dzj

X
k

zkVik + Ar �
B

2
(28)
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Figure 17. Example of allocation of tasks to processors generated by optimization network. Note that each task has

to be executed by exactly three di�erent processors while an approximate load balancing of processors should be

achieved.

We used the parameter values A = 75, B = 5, andD = 350 as well as � = 25 and us = 0 for the
transfer function (eq. (1)). Although there are only three parameters, we used D as the third
parameter because we have previously associatedD with the cost function of the problem. Our

simulations are performed for di�erent data sets with task utilizations zj randomly generated
from a uniform distribution between 0.01 and 0.10. Because of the quadratic cost function in

equation (26), the cost values zj are part of the interconnections and the external current is
constant. Thus, this problem is similar to the TSP and requires a random initialization to
overcome the unstable equilibrium point at uij = 0. We used the initial values Vij = 0:5 + �

with small, uniform noise (�10�7 � � � 10�7). The equations of motion (eq. (28)) were solved
by Euler's method with a step size �t = 2� 10�5 and required an average of 5000 iterations to
converge.

At this point, we can simulate the network and successfully solve the TAP as shown in
�gure 17 with a performance that is comparable to the TSP network, but this is not the actual

task in this application. What is required is a reallocation of tasks after a processor failure.
Therefore, the network has to be providedwith the information aboutwhich processor has failed.
Furthermore, it has to implement this information as an additional constraint before solving the

problem. For example, the unavailability of a processor k can be represented by enforcing Vkj = 0
for all tasks j ; that is, no tasks can be assigned to processor k. This additional constraint could

be implemented either by external currents of su�cient strength to inhibit all neurons in row k
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or by switches connecting the outputs of all neurons in row k to 0 (ground potential). Although
the latter method seems to be somewhat crude, it actually has the advantage that a possible

stuck-at-1 hardware fault of a neuron in that row is overridden by the external switch. Producing
this short circuit at the outputs is equivalent to our stuck-at-0 fault injections in the last section;

there we showed that the network indeed treats this condition as an additional constraint to the
optimization problem. Figure 18 illustrates the process of reallocation after a processor failure
by using the same example shown in �gure 17.

Output matrixOptimization network

Task
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1  1  0  1  0  1  1  1  1  1

1  0  1  1  1  1  1  1  1  0

1  1  1  1  1  0  0  0  1  1

0  1  1  0  1  1  1  1  0  1

Figure 18. Example of reallocation of tasks after a processor failure . Optimization network generates new allocations

by observing the constraints and by approximately balancing the load of the processors.

The network is obviously a critical component of the system because a network failure would
prevent the recon�guration of the system after a processor failure, which leads to a total system
failure. Thus, the fault tolerance of the ANN becomes a crucial characteristic. We tested the fault

tolerance again by simulating stuck-at-0 and stuck-at-1 faults in randomly selected locations.
Figure 19 illustrates the operation and convergence of the network for the example of a system

with m = 7 processors and n = 14 tasks where each task has to be executed by three di�erent
processors (r = 3). Figure 19(a) shows the initialization of the (fault-free) network for a scenario
in which processor 4 has failed, which is re
ected by an output value of zero for all neurons in

row 4. Figure 19(b) indicates the result after convergence with tasks 2, 3, and 6 assigned to
processor 1, tasks 3, 5, and 7 assigned to processor 2, etc. The load-balancing performance of

the ANN is also illustrated in �gure 19(b) which lists the processor util izations resulting from
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the ANN solution in comparison with a simple, heuristic reference algorithm (Bannister and
Trivedi 1988). As can be seen from the cost values listed at the bottom, which are the sum of

the squares of the processor util izations, the ANN is outperformed by the algorithm although
the di�erence of the values is only of the order of 1 percent. However, as we stated earlier, an

approximate load balancing is su�cient in this case as long as the solution can be obtained fast
and reliably.
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(a) Initialization of network (no faults) (b) Solution after convergence with resulting processor

utilizations in comparison to reference algorithm.
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(c) Initialization (�ve stuck-at-1 and

three stuck-at-0 faults injected into

network).

(d) Solution after convergence under presence of injected

faults.

Figure 19. Illustrationof operation and convergence of network generatinga task allocationafter failure of processor 4

(m = 7; n = 14; and r = 3).

The latter requirement is il lustrated in �gure 19(c), which shows the initialization of the
network for the same scenario, but now with eight faults simultaneously present in the network.

The fault locations of �ve stuck-at-1 and three stuck-at-0 faults are clearly recognizable after the
initialization. Figure 19(d) shows the results after convergence, and we can observe the same

phenomenon that the faults do not impair the convergence but act as additional constraints of
the problem. According to the cost value in �gure 19(d), the performance is only slightly worse
than in the fault-free case.

Since the performance of the ANN varies considerably for di�erent random initializations
and di�erent input data, it is necessary to evaluate the average performance over a su�cient

number of problem instances in order to obtain a statistically relevant assessment. We simulated
a system withm = 8 processors and n = 24 triplicated tasks (r = 3), which requires a network of
192 neurons. Seven di�erent test sets of random task utilizations were generated. The network

was simulated with seven di�erent initializations for each test set. The solution quality q was
used to assess the performance where values for copt were obtained from the heuristic algorithm

in Bannister and Trivedi (1988). Figure 20 demonstrates the performance degradation for up to
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eight injected stuck-at-0 or stuck-at-1 faults. The number of processors refers to the remaining
number of available processors in the system. For example, if the distributed system consists

initially of eight processors, then m = 7 refers to the operation of the network after a failure
of one processor with the neurons in the corresponding row switched to zero. Note that the

solution quality in �gure 20 is plotted in the small range from 0.75 to 1.00, which magni�es
the variations. As expected, the performance is very similar to the TSP because both use a
quadratic cost function.
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(a) Stuck-at-0 faults. (b) Stuck-at-1 faults.

Figure 20. Performance degradation of ANN allocating n = 24 triplicated tasks (r = 3) to m= 8; 7; and 6

processors.

The results in �gure 20 con�rm the qualitative observation in �gure 19 that the ANN

exhibits an extreme fault tolerance compared with conventional systems. Since the faults are
randomly located and act as additional constraints of the problem, it is possible that one ormore
faults accidentally dictate a better solution than the network would have found without faults.

This explains the occasional performance increase after fault injection and the nonmonotonic
characteristic of the performance degradation. Of course, this is only possible because of the

suboptimal performance of the ANN in the fault-free case. It is also important to note that none
of the simulations converged to an invalid solution or to a solution that violates the capacity
constraint pi < 1, although the latter was not explicitly enforced. An event that would lead to

an invalid solution can occur only if there are more than r stuck-at-1 faults in the same column,
thus assigning a task to more than r processors and violating the constraints. If the faults occur
at random locations and if the failure rate of a stuck-at-1 fault is known for a particular hardware

implementation, then this scenario can be used to estimate an upper bound for the reliability of
the ANN.

7. Concluding Remarks

The objective of our investigation was to explore the fault-tolerance characteristics of a
particular neural network type and to show how these networks might be used in certain critical

applications. First, we described the principle of operation of these networks and showed how
they can be used to solve optimization problems. The operation and the performance of the
network was �rst illustrated for two examples of classical optimization problems, the assignment

problem and the traveling salesman problem. With an analog hardware implementation of
the neural network in mind, the fault tolerance was simulated by subjecting the \neurons"

implemented as operational ampli�ers to multiple \stuck-at-1" and \stuck-at-0" faults.
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We have demonstrated that the fault tolerance is an inherent characteristic of this type of
neural network and that the injected faults are treated by the network as additional constraints

to the problem. Although conventional systems often break down completely after a single fault,
the network exhibits a graceful performance degradation even after multiple injected faults. This

characteristic can be exploited and a fault-tolerant neural network integrated on a single analog
very large scale integrated (VLSI) chip might perform a critical task that would otherwise require
a redundant microprocessor system with specially tested software.

As an example of a promising application, we used the neural network as a critical component

of a fault-tolerant, distributed processing system. The failure of a processor requires a
recon�gurationof the system and a reallocation of all tasks among the remaining processors. This

task allocation has to observe certain constraints and should at least approximately balance the
load of the processors. We showedhowa neural network can solve this problem and demonstrated
the robustness of the network by injecting simulated faults. Our results indicate that the network

can indeed perform this task reliably and that even multiple faults do not impair the ability of
the network to generate an answer with only slightly degraded performance. The limit of the

fault tolerance of the network is problem dependent and is determined by certain scenarios of
multiple faults that would lead to a violation of the constraints, such as, for example, more
than three stuck-at-1 faults in the same column. Such fault combinations are explicitly excluded

in our fault-injection experiments since they would obviously preclude a valid solution. With
known failure rates and faults occurring at random locations, these worst-case scenarios can be

used to estimate an upper bound for the reliabil ity of the neural network.

In summary, we think that applications exist for the type of neural network described in
this paper that can take advantage of the speed, low weight, low power consumption, and fault
tolerance of future hardware implementations. However, in most cases, the actual performance

of the network does not reach the performance of the best available, conventional optimization
algorithm. Thus, the neural network approach is best suited to certain real-time applications

that do not necessarily require the absolute best answer, but where it is necessary to generate an
approximate answer fast and reliably. The characteristic of a graceful performance degradation
without additional redundancy is especially interesting for long-term unmanned missions where

component failures have to be expected but no repair or maintenance can be provided.

NASA Langley Research Center

Hampton, VA 23665-5225

February 11, 1992
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8. Appendix A

Equations of Motion

In this section we will derive the equations that govern the dynamical behavior of the network

shown in �gure A1 (whichwaspresented earlier as �g. 1). The symmetry of the network simpli�es
the analysis, and it is su�cient to determine the equations for a particular (but arbitrary) unit i.

Figure A2 shows an equivalent circuit diagram for such a unit i in which ideal voltage sources
represent the feedback from all other units including unit i itself. The nonlinear relationship
Vi = g(ui) between input and output of a unit can be expressed by the sigmoidal function as

described in section 2, but it is not required for the following analysis.

The simple circuit in �gure A2 can be analyzed by applying Kirchho�'s current law

nX

j=1

ij + Ii = ir + iC (A1)

and Kirchho�'s voltage law

Vj =
ij

Tij
+ ui (A2)

u 1C 11r

u 2C 22r

u 3C 33r

u nC nnr
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T33

Tnn

I 1

I 2

I 3

I n

V 1

V 2

V 3

V n

T12

T21

T13T1n

T23T2n

T31T32T3n

Tn1Tn2Tn3

Figure A1. Circuit diagram of optimization network according to Hop�eld (1984). Note that negative feedback can

be realized by connecting positive conductances Tij to negative output �Vi of unit (not shown in this �gure).

(This �gure, which was presented earlier as �g. 1, is repeated here for the reader's convenience.)

Solving equation (A2) for ij and combining equations (A1) and (A2) results in

nX

j=1

�
TijVj � Tijui

�
+ Ii = ir + iC (A3)
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Figure A2. Equivalent circuit diagram of network in �gure A1 for one particular unit i .

By substituting the relations ir = ui=ri and iC = C (dui=dt) into equation (A3), it follows that

Ci
dui

dt
+

ui

ri
= �ui

nX
j=1

Tij +

nX
j=1

TijVj + Ii (A4)

After some �nal rearrangement, we get the \equations of motion"

Ci
dui

dt
= �ui

0
@ 1

ri
+

nX
j=1

Tij

1
A+

nX
j=1

TijVj+ Ii (A5)

The parallel combination of the input resistance ri and all the conductances Tij connected to
unit i can be expressed as a single resistance Ri with

1

Ri
=

1

ri
+

nX
j=1

Tij (A6)

The product of Ri and Ci is often referred to as the time constant �i of the equivalent circuit
diagram in �gure A2. An identical time constant for each unit i would require Ci = C and
Ri = R for all units i. The latter condition might be di�cult to achieve in practice if the

parallel combination of the weights in equation (A6) results in di�erent values for each unit i.
In this case, each individual value for ri would have to be chosen in a way that compensates for

these variations.

Also of importance is that the time constant �i describes the convergence of the input voltage
ui of unit i. Because of the potentially very high gain of the transfer function Vi = g(ui), the
output Vi might saturate very quickly. Thus, even if the input ui is still far from reaching its

equilibrium point, the output Vi might already be saturated; and by observing only Vi , it might
appear as if the circuit had converged in merely a fraction of its time constant �i .
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9. Appendix B

The Energy Function

The stabil ity of the neural network in �gure A1 can be proven by considering the following
Liapunov or \energy" function:

E = �
1

2

X
i

X
j

Tij ViVj �
X
i

ViIi +
X
i

1

Ri

Z Vi

g(0)
g�1 (V ) dV (B1)

With Vi = g(ui) denoting the sigmoidal transfer function between input ui and output Vi of
element i , the third term in equation (B1) represents an integral over the inverse of this transfer

function. Two examples of sigmoidal transfer functions, their inverses, and values for the integral
are illustrated in �gure B1. For example, with the transfer function

Vi =
1

2
[1 + tanh(2�ui)]

and its inverse

ui =
1

�
[arctanh(2Vi � 1)]

the integral term in equation (B1) can be written as

X 1

Ri

Z Vi

g(0)
g�1(V ) dV =

1

�

X
i

1

Ri

Z Vi

0:5
arctanh (2V � 1) dV (B2)

The integral term in equation (B2) vanishes in the so-called high gain limit with � !1.

As shown in �gure B1(a3), the value of the integral is zero at Vi = 0:5 and rises sharply as Vi
approaches either 0 or 1. For practical purposes with moderately high gain values �, the integral

term in equation (B2) can be neglected and plays a role only in establishing \energy walls" that
represent the borders of the hypercube in V -space (0 < Vi < 1 for all units i).

Sketch A presents a network with two neurons mutually interconnected by negative feedback
(Tij < 0). This is the simplest possible case of an optimization network (n = 2) and actually

represents the bistable memory element known as Flip-Flop. This Flip-Flop is used to
demonstrate the shape of the energy function (eq. (B1)), which is shown in �gure B2 for di�erent
values of �. If the gain is too small (�g. B2(a)), then the integral term dominates as Vi approaches

0 or 1 and prevents the occurrence of minima at the corners of the space. Instead, the system
behaves like a linear system with only one stable equilibrium point at Vi = 0:5 (ui = 0). In

�gure B2(b), two stable states with very shallow minima can be identi�ed because of the higher
gain. Although the gain in �gure B2(c) is still relatively small with � = 25, this case already
constitutes the high gain limit. It can be seen that the minima of the energy function are formed

where the descending energy surface meets the wall of the cube caused by the integral term in
equation (B2). Figure B2(c) also illustrates the unstable equilibrium point at Vi = 0:5 (ui = 0).

An initialization of the system with identical values for all ui or Vi , respectively, leads to a
movement to the unstable point at the center.

In order to prove the stability of the network, it is necessary to show that the energy
function of equation (B1) is indeed a Liapunov function for the system. The time derivative of

equation (B1) can be calculated using the chain rule

dE

dt
=
X
i

@E

@Vi

dVi

dt
(B3)
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The following steps of the proof require that the condition Tij = Tji be met. Thus, assuming a
symmetric connectivity, equation (B3) can be written as

dE

dt
=
X
i

dVi
dt

0
@�X

j

TijVj � Ii +
ui
Ri

1
A (B5)

The term in parentheses in equation (B5) is identical to the negative right-hand side of the
equations of motion of the network

Ci
dui
dt

= �
ui
Ri

+
X
j

TijVj + Ii (B6)

By substituting equation (B6) into equation (B5), we can write

dE

dt
= �

X
i

Ci
dVi
dt

dui
dt

(B7)

With the relation dVi=dt = (dVi=dui)(dui=dt), it follows from equation (B7) that

dE

dt
= �

X
i

Ci
dVi
dui

�
dui
dt

�2
(B8)

Assuming that the transfer function is monotonically increasing (dVi=dui > 0) and with Ci > 0,
each term in the sum of equation (B8) is nonnegative. Thus,

dE

dt
� 0 (B9a)

and
dE

dt
= 0 (B9b)
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Figure B1. Illustration of two di�erent sigmoidal transfer functions Vi = g(ui), their inverse functions ui = g�1(Vi),

and their integrals for di�erent values of gain �.
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(a)  λ = 5.

(b)  λ = 10.

(c)  λ = 25.

E V2

V1

E
V2

V1

E V2

V1

E
V2

V1

E
2V

V1

E

2V

V1

Figure B2. Plot of energy function according to equation (B1) for \Flip-Flop" in sketch A. Tij =�2; Ii= 1; ri = 1;

Ci = 1; transfer function as shown in �gure B1(a1).
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when dui=dt = 0 for all units i. Since the energy equation (B1) is bounded, equation (B9)
implies that equation (B1) is a Liapunov function for the system equation (B6). This means

that any time evolution of the system decreases the energy equation (B1) by moving to a local
energy minimum at which point the motion of the system stops.
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